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‘iition features for the classification and identification of synthesized steady
state vowel-like sounds. The PARCOR coefficient technique is shown to be a
much quicker and more computationally efficient method of vowel identification
than identification by formant frequencies, which involves the computation of
poles and zeros and the back-calculation of formant frequencies and formant
bandwidths.

It is 11 documented in the literature that steady state vowel sounds may
be identified and classified according to their formant frequencies. The for-
mant frequencies of each vowel may be shown to cluster together, and the vowel
clusters may be separated from one another in the space defined by some subset
of the formant frequencies(Barney, 1952; Peterson, 1952; Peterson & Barney,
1952; Potter & Steinberg, 1950).

When a spoken vowel is presented in time series form, utilization of these
clustering properties requires a transformation from time domain to frequency
domain (formant frequencies) which is quite complicated and computationally
expensive. A more efficient vehicle for classifying steady state vowel-like
sounds is developed by this author to be the forward PARCOR coefficient K?,
i=1,2,...p which arise naturally as intermediate parameters in a pth-orde% least
squares complex adaptive lattice filter (Hodgkiss & Presley, 1981, 1982).

The formant frequency data used in this study are those measured by Peter-
son and Barney (1952; Barney, 1952; Potter & Steinberg, 1950), obtained through
the courtesy of the Bell Laboratories Archives. A time series for each vowel
utterance is generated from three formant frequencies using a six-pole IIR
digital recursive filter. The time series are then inverse filtered via a six-
zero complex adaptive lattice filter (Alexandrou & Hodgkiss, Note 1; Hodgkiss
& Presley, 1981, 1982), producing, for each utterance, a set of six PARCOR
coefficients.

The PARCOR coefficients produced by the lattice exhibit the same clustering
properties as do the formant frequencies; namely, minimum cluster size (average
intracluster distance) in two dimensions for all vowels, and maximum cluster
separability (intercluster distance) in six dimensions for selected adjacent-
vowel pairs. As a combined measure of compactness and separability, the ratio
of the sum of average intracluster distance to intercluster distance for each
of the adjacent-vowel pairs yielded roughly equivalent results for the formant
frequencies and PARCOR coefficients. Graphically, the first two PARCOR co-
efficients are sufficient for the identification of the first nine vowels,
whereas the third PARCOR coefficient is necessary for identification of the
tenth vowel, /3/. These results are analogous to those observed for the clust-
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ABSTRACT

The partial correlation (PARCOR) coefficients of the
least squares lattice filter may be used to conveniently and
efficiently represent various types of acoustic signals.
Because a stationary time series may be represented by a
small number of PARCOR coefficients, the PARCOR coefficients
have been widely used as effective pattern recognition
parameters for the representation and transmission of
information. This thesis establishes the PARCOR
coefficients of the least squares lattice filter as
efficient and effective pattern recognition features for the
classification and identification of synthesized steady
state vowel-like sounds. The PARCOR coefficient technique
is shown to be a much quicker and more computationally
efficient method of vowel identification than identification
by formant frequencies, which involves the computation of
poles and zerds and the back-calculation of formant

frequencies and formant bandwidths.

It is well documented in the literature that steady
state vowel sounds may be identified and classified
according to their formant frequencies. The formant
frequencies of each vowel may be shown to cluster together,
and the vowel clusters may be separated from one another in
the space defined by some subset of the formant frequencies

(Barney, 1952; Peterson, 1952; Peterson & Barney, 1952;
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Potter & Steinberg, 1950)

When a spoken vowel is presented in time series form,
utilization of these clustering properties requires a
transformation from time domain to frequency domain (formant
frequencies) which is quite complicated and computationally
expensive., A more efficient vehicle for classifying steady
state vowel-like sounds is developed by this author to be
the forward PARCOR coefficients K?, i=1,2, . . . p which
arise naturally as intermediate parameters in a pth-order

least squares complex adaptive lattice filter (Hodgkiss &

Presley, 1981, 1982).

The formant frequency data used in this study are those
measured by Peterson and Barney (1952; Barney, 1952;
Potter & Steinberg, 1950), obtained through the courtesy of
the Bell Laboratories Archives., A time series for each
vowel utterance is generated from three formant frequencies
using a six-pole IIR digital recursive filter. The time
series are then inverse filtered via a six-zero complex
adaptive lattice filter (Alexandrou & Hodgkiss, Note 1;
Hodgkiss & Presley, 1981, 1982), producing, for each

utterance, a set of six PARCOR coefficients.

The PARCOR coefficients produced by the lattice exhibit
the same clustering properties as do the formant

frequencies; namely, minimum cluster size (average

20

PO YYEwY




. Page v

intracluster distance) in two dimensions for all vowels, and
maximum cluster separability (intercluster distance) in six
dimerisions for selected adjacent-vowel pairs. As a combined
measure of compactness and separability, the ratio of the
sum of average intracluster distances to intercluster
distance for each of the adjacent-vowel pairs yielded
roughly equivalent results for the formant frequencies and
PARCOR coefficients. Graphically, the first two PARCOR
coefficients are sufficient for the identification of the
first nine vowels, whereas the third PARCOR coefficient is
necessary for identification of the tenth vowel, /3/. These
results are analogous to those observed for the clustering

of formant frequencies.
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CHAPTER I
INTRODUCTION

The partial correlation (PARCOR) coefficients of the
least squares lattice may be used to conveniently and
efficiently represent various types of acoustic signals.
Because a stationary time series may be represented by a
small number of PARCOR coefficients, the PARCOR coefficients
have been widely used as effective pattern recognition
parameters for the representation and transmission of
information, This thesis establishes the PARCOR
coefficients of the least squares lattice as efficient and
effective pattern recognition features for the
classification and identification of synthesized steady
state vowel-like sounds. The PARCOR coefficient technique
is shown to be a much quicker and more computationally
efficient method of vowel identification than identification
by formant frequencies, which involves the computation of
poles and zeros and the back-calculation of formqnt
frequencies and formant bandwidths. Even though this thesis
addresses identification of vowels, it is clear that the
PARCOR coefficients may be used to identify characteristics

of other acoustic and electromagnetic signals.

It is well documented in the literature that steady

state vowel sounds may be identified and classified
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according to their formant frequencies. The formant
frequencies of each vowel may be shown to cluster together,
and the vowel clusters may be separated from one another in
the space defined by some subset of the formant frequencies
(Barney, 1952; Peterson, 1952; Peterson & Barney, 1952;

Potter & Steinberg, 1950)

When a spoken vowel is presented in time series form,
utilization of these clustering properties requires a
transformation from time domain to frequency domain (formant
frequencies) which is quite complicated and computationally
expensive. A more efficient vehicle for classifying steady
state vowel-like sounds is developed by this author to be
the forward PARCOR coefficients K?, i=l1l,2, . . . p which
arise naturally as intermediate parameters in a pth-order

least squares complex adaptive lattice filter (Hodgkiss &

Presley, 1981, 1982},

The specific purpose of this research is to establish

the value of the PARCOR coefficients as efficient and
effective pattern recognition features for the
classification and identification of (synthesized) steady
state vowel-like sounds. Specifically, the intent of this
thesis is to show that for steady state vowel-like
utterances, the PARCOR coefficients of each vowel will
cluster together, and that the ten English vowels may be

separated from one another in the space defined by some
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subset of the PARCOR coefficients in much the same way as
the formant frequencies cluster and separate the vowels. 1In
other words, the inverse filtering procedure may be
considered as a change of variable (Turner, 1982); the
PARCOR coefficients behave in this manner when the related
formant frequencies themselves exhibit a clustering

behavior.

A time series for each vowel utterance is generated
from three formant frequencies using a six-pole IIR
recursive digital filter. The formant frequency data are
those measured by Peterson and Barney (1952; Barney, 1952;
Potter & Steinberg, 1950), obtained through the courtesy of
the Bell Laboratories Archives. A six-zero complex adaptive
least squares lattice filter is used as an inverse filter on

each time series, producing, for each, a set of six PARCOR

coefficients.

Considerable motivation exists for the development of a
system identification technique which does not require the
calculation of formant frequencies and bandwidths from a
time series., Specifically, in the field of speech
processing (Markel, 1972, 1973; McCandless, 1974; Wakita &
Kasuya, 1977), researchers have commonly calculated the
coefficients, Si, of the denominator polynomial from the

transfer function of an inverse filter and then obtained the

formant frequencies from the roots of the polynomial. As
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stated previously, this is a complicated calculation. For
applications where frequencies of the formants are not
important but desired for vowel identification clustering, a
change of clustering variable to the PARCOR coefficients

would eliminate the expensive and complicated computation.

Vowel Identification by Formant Frequency

During voiced speech, when the vocal tract is excited
by the glottal source, the spectral peaks which occur are
referred to as the formants of the particular speech sound.
For the majority of male speakers the first three formants
lie in the ranges 150-850 Hz., 500-2500 Hz., and
1700-3500 Hz.. Formants for women and children are higher
in frequency, due, in part, to the smaller size of their

vocal mechanisms (Fant, 1956).

Some speech sounds, such as steady state vowels, may be
identified or characterized by their formant frequencies and
the bandwidths and levels of those formant frequencies.

When different speakers speak one of the vowels, the
utterances are different for each speaker. 1In the
perceptual space defined by the frequencies of the formants
(which is referred to as the formant space), these
differences manifest themselves, for each vowel, as a
cluster of points aroﬁnd §ome average value. 1In the speech

literature, the first three formants are used widely for
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adequate vowel identification, (Peterson, 1952; Peterson &
Barney, 1952; Potter & Steinberg, 1950), although
considerable evidence has been offered in the literature
both for and against the necessity of more formants, formant
bandwidths, and/or formant amplitudes (Peterson, 1952;
Peterson, 1961; Bernstein, 198l1; Potter & Steinberg,
1950), and fundamental frequencies of excitation (Foulkes,
1961; Peterson, 1961) for vowel identification. A popular
three-dimensional mechanism for vowel identification is a
plot of the first three formant frequencies F;, Fp, F3, in
the perceptual coordinate space defined by the axes Fl, F2,
and F3. A base 10 logarithmic scale is usually used to
account for the nonlinearities of the ear. The spatial.
position of the articulators and the vocal mechanism at any
point in time directly affect the frequency position of the
resonances of the vocal tract by changing the relative sizes

of different parts of the tract.

The location of a vowel in the "formant space" defined
by F1 and F2 corresopnds to the spatial location of the
tongue hump in the two-dimensional r2presentation of the
oral cavity for that vowel. In other words, the formant
frequency space classification seems to have a physical
significance. Figure 1 shows the configuration of the
articulators for the ﬁen English vowels (adapted from

Potter, Kopp, & Kopp, 1966, chap. 12) and their
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corresponding relative tongue hump positions in the vowel
quadrilateral (adapted from Denes & Pinson, 1963, p. 55).
If the vowels are classified based on these tongue hump
positions; (i.e., /i/, as in the word "heed" is a high,
front vowel, whereas />/, as in the word "hawed" is a low
back vowel), the classifications are similar to those
obtained using the formant space plots. The Peterson and
Barney study is discussed and results of graphical and
quantitative analyses of the formant frequency data are

presented in Chapter II.

Acoustic Tube Vocal Tract Models

There are many applications where the PARCOR
coefficients have a direct physical relationship to sound
generation mechanisms. One such case is the generation of
speech sounds by the human vocal system. The vocal tract is
often modeled as an acoustic tube (Dunn, 1961; Flanagan,
1972; Markel & Gray, 1976, chap. 4; Wakita, 1973a, 1973b,
1979; Wakita & Gray, 1975) excited by either a voiced or
unvoiced source somewhere along its length, with appropriate
boundary conditions which depend on the circumstances of
phonation. The PARCOR coefficients of the lattice structure
have a direct physical relationship to the reflections
between sections of the acoustic tube. Specifically, the

area ratio between successive sections is defined

" Y [ i -
. LM—
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Figure 1. (a) Schematic vocal tract profiles for the

production of English vowels. (Adapted from Potter, Kopp, &
Kopp, 1966, chap. 12) (b) Tongue hump positions for the ten
English vowels. (Adapted from Denes & Pinson, 1963, p. 55)
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(Wakita, 1979, p. 28l1) as

A]’H 1-Xj .
= . J=1' 2, L] . . pa
Aj 1+Kj

where the Aj are the areas of the sections of the acoustic
tube and the Kj are the PARCOR coefficients for a pth-order
model. Wakita (1973b) suggested that the area function of
the acoustic tube (determined from a ladder implementation
of the linear prediction technique) could be used to detect
obstructions in the vocal tract. If the tube is considered
to be lossless, of length L, constant cross-sectional area,
and closed at the vocal fold end while open at the lip end,
resonances occur at the frequencies corresponding to L=nA/4;
=1, 2, . . . . where A is the wavelength of the

fundamental resonant frequency.

Autoregressive Model for Vowel Representation

The acoustic tube model of the vocal tract lends itself
directly to a mathematical model for a spoken vowel sound.
Non-nasal vowels have been modeled widely in the speech
literature as autoregressive (AR) processes of order p,
generated by passing a white input time series, vi{(n),
through a pth-order all pole filter with transfer function

1 2(z)

H(z)= =
A(z) V(z)

P
where A(z)=1-z ajz’ and the output process,
je

- o= \‘AM
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p

z(n)= 2 a;z(n-j)+v(n).
i

The inverse of a pth-order AR process is a pth-order
moving average (MA) process, generated by passing the input,
v(n), through a pth-order all zero filter with transfer

function

2(2)
H(z) = B(z) =

viz)

P P
where B(z)=1-Z bkz.k and z(n)= Y b, vin-k).
k=l k=i

The least squares lattice filter used in this study is
a feed-forward MA (all-zero) lattice. This inverse lattice
filter produces a whitened output spectrum by placing a zero
at the location of each pole in the input spectrum. Optimal
whitening is obtained when the following conditions are
satisfied (because of the one to one correspondence of zeros
to poles): 1) AR input processes are used as the lattice
input, and 2) the order of the lattice filter chosen to be
equal to the order of the input AR process. The fitting of
an AR model to a time series is equivalent to the method of
maximum entropy spectral analysis (Burg, 1967; Macina,
1981; Papoulis, 1981; Parzen, 1974; Ulrych & Bishop,
1975). The maximum entropy technique assumes maximum
uncertainty with respect to the unknown information about

the signal (outside the sampling interval).
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Because the aim of this research is to illustrate the
pattern recognition capabilities of the PARCOR coefficients
for data with known formant frequencies (data which had
previously been shown to cluster in the frequency domain),
the vowels are modeled as sixth-order AR processes and the
lattice is specified to be sixth-order to maximize the
accuracy of the PARCOR coefficients. The modeling of a
vowel sound as a sixth-order AR process is a gross over-
simplification in terms of speech production. However, it
is a necessary one if the fundamental intent of the research
is to be respected. Generation of vowel utterances from

formant frequencies is discussed in Chapter III.

The Linear Prediction Problem

The inverse filter is determined thréugh the use of the
linear prediction technique. This technique has been used
widely in the speech field as well as in geophysics and
neurophysics (Landers & Lacoss, 1977; Makhoul, 1975; Wood
& Treitel, 1975) for time series modeling. The linear
predictive technique estimates the properties of a signal by
modeling a sample as a linear combination of past samples
and minimizing some form of the error between the actual and
predicted samples. The most common implementations of the
linear predictive technique have been the autocorrelation
and covariance methods (Maktoul, 1975; Markel & Gray, 1976,

chap. 9; Rabiner & Schafer, 1978).
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Lattice Method of Linear Prediction

The linear prediction technique may also be implemented
as a lattice algorithm, which is recursive in time and
order. A lattice structure has several advantages over the
autocorrelation and covariance methods. Most importantly,
the physical structure of the lattice filter is composed of
cascaded filter stages; a pth-order lattice filter may be
decomposed into all filters of up to and including pth-~
order. The pth-order lattice structure simultaneously
generates outputs of all lesser order filters. Lattice
models are naturally related to physical models such as the
scattering and propagation of waves in a stratified medium
(Friedlander, 1980). The PARCOR coefficients of the lattice
are also related to the reflections between layers of the
medium being modeled. This type of physical meaning is not
apparent for the polynomial filter coefficients, ﬁj, which
are obtained from the PARCOR coefficients by a nonlinear
recursion., The lattice model is directly applicable to the
study of transmission theory, seismic signal processing, and
underwater sound propagation as well as speech
communication. For instance, geophysicists have used ladder
structures in their study of structural features of the
earth's subsurface (Burg, 1967; Robinson & Treitel, 1980;
Wiggins & Robinson, 1965; Ulrych & Bishop, 1975). The

lattice method of linear prediction was first presented by
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Itakura & Saito (1971) and is well known in the speech field
as an analysis tool (Atal & Hanauer, 1971; Flanagan, 1972;
Makhoul, 1975). Also, hardware implementations of lattice
filters have been successfully marketed as effective
synthesis devices for the compression and transmission of
speech signals. The Texas Instruments' "Speak & Spell" game
is an example of this technology. Researchers in the speech
field have used the lattice based on an acoustic tube model
of the vocal tract (Markel & Gray 1976, chap. 4; Wakita,
1973a, 1973b; Wakita & Gray 1975). 1In addition to the
obvious physical significance of the lattice structure,
other advantageous features of the lattice method of linear
prediction include a recursive-in-time implementation
(rather than block processing), faster convergence,
‘insensitivity to eigenvalue spread, better numerical
behavior, robustness, and insensitivity to roundoff noise
(Friedlander, 1982a; Lee, Morf & Friedlander, 1981;
Makhoul, 1978; Markel & Gray, 1976, chap. 9). Lattice
filters have found application in the fields of noise
cancelling, channel equalization, seismic signal processing,
speech processing, system identification, frequency
tracking, spectral estimation, and spectrum prewhitening
(Friedlander, 1982b; Hodgkiss & Alexandrou, 1983; Hodgkiss
& Presley, 1981, 1982; Lee, Morf, & Friedlander, 1981;
Satorius & Alexander, 1979; Satorius & Pack, 1981;

Satorius & Shensa, 1980a).
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The least squares lattice. The least squares lattice

recursions were first obtained by an algebraic approach
(Morf, Lee, Nickolls & Vieira, 1977; Morf, Vieira, & Lee,
1977). The least squares lattice (LSL) structures proposed
by Morf et. al are more efficient numerically than the
gradient lattice algorithms (Griffiths, 1975, 1977, 1978),
requiring only O(p) operations per time update, where p is
the order of the filter. The least squares lattice
structures are known for their good stability properties,
rapid startup, excellent convergence properties and fast
parameter tracking capabilities (Hodgkiss & Presley, 1981;
Lee, 1980; Lee, Morf, & Friedlander, 1981; Satorius &
Pack, 1981l; Satorius & Shensa, 1980b). These advantages
are a direct result of two lattice parameters which accnunt
for the algorithmic differences between the gradient ari LSL
formulations: an exponential weightiné parameter,
(1"°CLSL)' and a Gaussian likelihood step size parameter,
Y;-2 {(n-1). These parameters are discussed in Chapter IV.
Certain assumptions must be made about the behavior of the
waveform outside the time interval of observation. The
lattice structure used in this research prewindows the data,
i.e., it assumes that z(n)=0 for all n<0, The LSL
Algorithms deveolped by Morf et. al were adapted for complex
data by Hodgkiss and ?resley (1981, 1982) and then
programmed in FORTRAN by Alexandrou and Hodgkiss (Note 1).

A section of this program was incorporated into this
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inverse filter is discussed in Chapter IV.
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CHAPTER II
VOWEL IDENTIFICATION

The concept of formant space clustering is the result
of work done at Bell Laboratories during the years
1947-1951. A study of sustained vowels was undertaken by
G. E. Peterson, H. L. Barney, R. K. Potter, J. C. Steinberg
and others to investigate the relationship between spoken
and perceived vowels and their acoustical correlates
(Barney, Note 2; Peterson & Barney, 1952; Potter &
Steinberg, 1950). The vowels used were the ten English
vowels in a consonant-vowel-consonant {(CVC) context with /h/
as the first consonant. For the Bell Laboratories studies,
a total of 76 speakers including 33 men, 28 women, and 15
children each recorded two lists of 10 words (each word
contained a vowel in the context /h_d/). The vowels and
corresponding symbols and words adapted from those of the
International Phonetic Alphabet (IPA) are presented in
Table 1. The majority of the male speakers spoke General
American English., The words were recorded and played to a
group of 70 listeners who identified the vowel in each of
the words. The vowel portion of each CVC utterance was also
analyzed with a sound spectrograph to determine the
frequency positions of the first three formants. Since the
results of the listening tests showed the effects of the

diverse dialectal backgrounds of the listeners, a sub-group
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Table 1
Vowel Symbols and Corresponding CVC Test Utterances )
Used in the Bell Laboratories Study
Symbola Data points CVC syllable Utterance >
»
/i/ 65 /hid/ heed
/1/ 51 /h1d/ hid
/€/ 35 /h€d/ head ij
/=/ 56 /h¥d/ had
/a/ 37 /had/ hod
\
/2/ 45 /hod/ hawed ;
/u/ 55 /hud/ hood
/u/ 60 /hud/ who'd ]
/A/ 37 /hAd/ hud '
/3/ 65 /h3d/ heard :
.‘_1
°Symbols are those of the International Phonetic Alphabet. 3
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of 26 observers with similar characteristics was chosen
(Barney, Note 2). Of the 1520 vowels presented, 1203 were

identified unanimously by the 26 observers.

When the first and second formants of the vowels are
plotted against each other, the vowels appear in essentially
the same positions as they do in the vowel quadrilateral
(Peterson & Barney, 1952), Vowels may be separated on the
basis of their locations in the space defined by the first
two formants, except for the vowel /3/, identified by its
third formant, which is lower than that of the other vowels
(Potter & Steinberg, 1950). The distribution is continuous
in the F1-F2 plane in going from vowel to vowel; the
overlap between oOwels is characteristic of the differences
in the way various individuals articulate and pronounce the
vowels (Peterson & Barney, 1952). The distributions for
each vowel tend to be elongated, elliptical areas along
lines which pass through the origin, indicating that
although formant ratios are not exactly constant, they do
tend to be helpful for the identification of some vowels

(Potter & Steinberg, 1950).

Analysis of the Formant Frequency Data

Fundamental and formant frequency data for these 1203
utterances were obtained through the courtesy of Bell

Laboratories Archives for use in this study. Because Potter

-
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and Steinberg (1950) determined that formant frequency
positions for a man’s voice differed from those of a woman's
for the same vowel, the present author has restricted this
study to data from male utterances to control for
fundamental frequency. This author has plotted the vowel
data used for this study in the manner of Peterson and
Barney. Data for four of the utterances are eliminated from
the study because they occurred outside the limits of three
standard deviations for a particular vowel. The remaining
number of data points per vowel are listed in Table 1. The
base 10 logarithms of formant frequencies are normalized so
that the frequency range of the entire set of data falls
within the interval [0,1]. Table 2 presents the ranges of
normalized formant frequencies. The widest range is spanned
by F2, the second widest by Fl. This is consistent with the
recognition of F2 in the literature (Potter, Kopp, & Kopp,
1966, pp. 74-75) as a primary feature of voiced speech,
especially the movement of F2 in identifying dipthongs (as

in "how", "hoe", "hay", "high", "hoist").

Graphical Analysis

Figures 2 and 3 present the vowel clusters for all ten
vowels in the F1-F2 and Fl1-F3 planes. The same clusters are
presented separately by vowel in Figures 4-13 for the F1-F2
plane, and the cluster for the vowel /3/ in the F1-F3 plane

is shown in Figure 14. Each data point appears as the
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Normalized and Un-normalized Ranges for
Formant Frequencies and PARCOR Coefficients
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A

Cluster variable Minimum Maximum

Un-normalized values
Formant frequencies (1-3) 190 3400

PARCOR coefficients (1-6) -0.9674 0.9971

Values normalized to [0,1]

Formant frequencies

log F, 0.0000 0.5235
log F, 0.3747 0.9201
log Fy 0.6924 1.000

PARCOR coefficients

Kl 0.0000 0.6484
K2 0.3020 1.000

K3 ' 0.0320 0.4346
K4 0.3071 0.9425
K5 0.2027 0.6200
K6 0.8858 0.9303
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Figure 2, Clustering of the ten English vowels in the

F1-F2 plane.
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Figure 3. Clustering of the ten English vowels in the

F1-F3 plane,
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Figure 4. Clustering of the vowel /i/ in the F1-F2 plane.
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NORMALIZED LOG F2

NORMALIZED LOG F1

Figure 5. Clustering of the vowel /I/ in the F1-F2 plane.
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Figure 6. Clustering of the vowel /&/ in the Fl1-F2 plane.
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Figure 7. Clustering of the vowel /&/ in the F1-F2 plane.
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Figure 8, Clustering of the vowel /a/ in the F1-F2 plane.
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Figure 10. Clustering of the vowel /U/ in the Fl1-F2 plane.
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Figure 11. Clustering of the vowel /u/ in the F1-F2 plane.




Page 30

NORMALIZED LOG F2

NORMALIZED LOG F1

Figure 12. Clustering of the vowel /A/ in the F1-F2 plane.
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Clustering of the vowel /3/ in the Fl1-F2 plane.
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symbol for the particular vowel which it repressnts. The
symbols are somewhat modified versions of those of the
International Phonetic Alphabet, due to the limited
availability of IPA symbols for plotting purposes. The
results mentioned previously as reported by Peterson,
Barney, Potter, and Steinberg are reproduced and verified by
the present author, Each vowel cluster on the formant plots
is enclosed by a solid line. The exact outline of each
cluster is arbitrary; the outlines are intended to indicate
a general cluster shape for the purpose of evaluating

separability in a graphical, qualitative manner.

Distance measures

Selected quantitative distance measures and cluster
sizes are computed for the formant frequencies in two
(F1,F2) and three (Fl1,F2,F3) dimensions (see Appendix A).
Although the actual distance measures (Tou & Gonzales, 1974,
p. 77) used are arbitrary, a set of dimensionless
measurements is necessary to allow comparison of the cluster
sizes and vowel separability in the formant space with that
in the PARCOR space. The averaqge intracluster distance for
each cluster is computed as the averége Euclidean distance
between each of the data points in the cluster (normalized
log frequency) and thé centroid of the cluster. The
intercluster distance is computed as the Euclidean distance

between the centroids of selected adjacent vowel cluster
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pairs. 1Ideally, the average intracluster distances should
be minimized for maximum cluster compactness and the
intercluster distances should be maximized for maximum
cluster separability. The average intracluster distances
for each cluster and the intercluster distances for selected
adjacent vowel pairs are tabulated in Tables 3 and 4,
respectively. The average intracluster distance, a measure
of cluster compactness, for each vowel is minimum in two
(F1,F2) dimensions, whereas the intercluster distance, a
measure of vowel separation, is maximum in three (Fl,F2,F3)
dimensions. The ratio of the sum of average intracluster
distances to intercluster distance for each of the adjacent-
vowel pairs is also computed in two and three dimensions,
(presented in Table 5). This measurement is meaningful when
compared with values computed for the PARCOR coefficients
" (Chapter 5). The distance measures substantiate the results
of the graphical analysis: sufficiency of the Fl1-F2 plot to
identify the first nine vowels and the Fl-F3 plot to

separate them from the tenth vowel, /3/.
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Table 3
Average Intracluster Distances for
Formant Frequency and PARCOR Coefficient Clusters
Cluster dimension
Vowel F(1,2) F(1,2,3) K(1,2) K(1,2,3) K(1-6)
/i/ 0.0456 0.0514 0.1303 0.1418 0.1623
/1/ 0.0424 0.0464 0.0848 0.0926 0.1069
/€/ 0.0337 0.0375 0.0627 0.0715 0.0834
/2/ 0.0312 0.0360 0.0583 0.0699 0.0830
/a/ 0.0263 0.0401 0.0155 0.0650 0.1027
/2/ 0.0496 0.0577 0.0116 0.0408 0.0920
/u/ 0.0461 0.0533 0.0235 0.0393 0.0737
/u/ 0.0775 0.0815 0.0299 0.0463 0.0797
/N/ 0.0365 0.0443 0.0264 0.0527 0.0774
/3/ 0.0426 0.050¢4 0.0448 0.0373 0.0567
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Table'4

pd Intercluster Distances for Adjacent-Vowel Pairs of

Formant Frequency and PARCOR Coefficient Clusters

Cluster Dimension

i Vowel pair F(1,2) F(1,2,3) K(1,2) K(1,2,3) K(1-6)

i-I 0.1408 0.1482 0.1828 0.1832 0.2510

I-€ 0.1143 0.1147 0.0809 0.0917 0.1083

. &-ae 0.0852 0.0861 0.0968 0.1067 0.1142

“ ®-3 0.1388 0.1824 0.1288 0.1842 0.2921

; a-> 0.1616 0.1619 0.0676 0.'207 0.1372
a-A 0.0648 0.0653 0.0428 0.0577 0.0625
a-3 0.1598 0.2021 0.0881 0.2291 0.3407
2-U 0.1179 0.1200 0.0539 0.0572 0.1071
2-A 0.1537 0.1537 0.0884 0.1075 0.1364
U-u 0.1376 0.1377 0.0229 0.0542 0.0774
u-3 ‘0.1060 0.1400 0.1155 0.1479 0.2502
A-T 0.0951 0.1495 0.0590 0.1826 0.2936
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Table 5

] ) Ratio of the Sum of Average Intracluster Distances to

; Intercluster Distance for Adjacent-Vowel Pairs of

& Formant Frequency and PARCOR Coefficient Clusters

;: Cluster Dimension

P Vowel pair F(1,2) F(1,2,3) K(1,2) K(1,2,3) K(1-6)

i-1 0.6249 0.6599  1.176  1.279  1.072

i I-€ 0.6661 0.7322 1.824 1.789 1.757

g &;e 0.7624 0.8542 1.251 1.326 1.457

Ef: e-3 0.5312 0.4739  0.7431 0.6223 0.4783

L a-2 0.4694 0.6038 0.4005 0.8761 1.419

F? a-A 0.9695 1.293 0.9804 2.040 2.879

; a-3 0.4309 0.4479 0.5996 0.4788 0.4679

2 o-U 0.8118 0.9247  0.6503 1.401  1.546

*l 2=A 0.5600 0.6637 0.4300 0.8688 1.241
U-u 0.8982 0.9793 1.780 1.579 1.980
u-3 0.8369 0.7408 0.5264 0.5685 0.5209
A-T 0.8311 0.6338 1.081 0.5336 0.4565
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CHAPTER III
GENERATION OF SYNTHESIZED VOWEL-LIKE SOUNDS

It was desired to reproduce the data measured at Bell
Laboratories as accurately as possible. The speech spectrum
may be adequately represented by frequency information below
4000 Hz. (Denes & Pinson, 1963, p. 140) which includes the
range of the first three formant frequencies for male
speakers. Since each formant must be represented by a
complex conjugate pole pair, a six-pole filter is a
sufficient representation of a vowel. A sampling frequency
of 8000 Hz. is chosen, following Rabiner and Schafer (1978,
chap. 3).

Digital Models for the Vocal Tract

Rabiner and Schafer (1978, chap. 3) represent the vocal
tract as a recursive IIR digital filter with transfer
function

1 z2(z)

1
H(z)= —p5— = = (D)
1- f ajzﬂ A(z) v(z)
j=t

where p is the order of the filter. For stability, the z-
plane poles corresponding to the roots of this equation must
lie inside the unit circle. The corresponding output AR

speech process, z(n), is described by the equation:
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z{n)=a; z(n-1)+azz{n-2)+ . . . +apz(n-p)+v(n)
. (2)
=§ aj z(n=-j)+v(n)
j=
Each formant of a vowel is related to a complex conjugate

pair of zeros of the polynomial in z7' , A(z):

-OF; T +j2wFiT

z, = e e

where Fi is the jth formant frequency,t&Fi is the
bandwidth of the jth formant, and T is the sampling period
(Rabiner & Schafer, 1978). So that the filter may be
realized recursively, the polynomial coefficients are
determined by evaluating the denominator of H(z), where

1

H(z)=
M (-z2" )
il

P .
and equating the denominator to A(z)=1- Y ajz'J .
il

Physical Model of Speech Production

The physical mechanism for speech production consists
of the lungs, bronchi, trachea, larynx, pharynx, and nasal
and oral cavities. The larynx, which includes the vocal
folds, is the principal structure for voiced speech.
Complex tones are produced when short duration air pulses
produced at the glottis (the space between the vocal folds)
excite the supralaryngeal portion of the vocal tract.

Alternately, a noise sou.ce may be produced by constricting
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the vocal tract (i.e., at the vocal folds, lips, tongue, or
soft palate), causing the airstream to become turbulent.
For unvoiced speech, the noise source is produced without
the vibration of the vocal folds. Here, too, the vocal
tract acts as a resonant cavity to shape the resultant
sound. Figure 15 (from Flanagan, 1972, p. 24) shows the
physical system in terms of the possible mechanisms for

sound generation and resonation.

The resonant frequencies of the lossless tube model of
the vocal tract have very narrow bandwidths. Actually, the
vocal tract is not lossless. The cross section of the vocal
tract varies continuously over the length, and energy losses
occur as a result of result of viscous friction between air
and the walls of the tube, heat conduction through the tube
walls, and vibration of the tube walls as well as from
losses at the glottis (vocal folds) and lips. These losses
are frequency-dependent, and their combined effect is to
change the positions of the vocal tract resonances and
broaden the bandwidths of those resonances. (Rabiner &

Schafer, 1978, p. 72).

Modeling of Formant Bandwidths

The bandwidths of the Peterson and Barney data were
measured by Bugert (1953) and again by Dunn (1961). Bogert

concluded that bandwidths of formants are invariant and
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independent of vowel. Dunn also questioned whether changes
in bandwidth from vowel to vowel are critical or even
necessary for correct identification of synthetic speech.
Neither the bandwidth data measured by Dunn nor that
measured by Bogert were available for use in this study.

The required bandwidth values for each formant frequency are
supplied by averages over all ten vowels (AF =52.0,
OF,=66.0, AF3=120.0) from sine wave bandwidths for
synthesized vowels determined by Dunn with his electrical

vocal tract.

A series of experiments conducted by this author
describes the effects of bandwidth changes on the PARCOR
coefficients of a single formant (two-pole) system. For a
series of single formant frequency systems with formants
incrémented over the range 250-3500 Hz., when the bandwidth
of the formant is incremented from 10-200 Hz,.,, the range
(averaged over the formant frequency experiments) over which
Kl varies is .0057 with a standard deviation of .0034. The
average range over which K2 varies is .0115 with a standard
deviation of .1361. Likewise, for a series of constant-
bandwidth single-formant frequencies, when the formants are
incremented over the range 250-3500 Hz., for each bandwidth
in the range 10-200 Hz. The range (averaged over the
bandwidth experiments) over which Kl varies is 1.90 with a

standard deviation of .0040; the average range of K2 is
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.0061 with a standard deviation of .0255. In comparing the

ranges of K1 and K2, it is observed that the effect of
formant frequency variations on the PARCOR coefficients,
especially K1 (which has been previously-determined by
Tohkura & Itakura, 1979, to be sensitive'to variations in
pole placement) is much more pronounced than the effect of
bandwidth variations, which are practically negligible.
Incidentally, it is noted that as AFi is increased for any

Fj, K2 decreases. As Fj is increased for anyuAFj, K1l

increases.

Modeling of Vocal Tract Excitation

Modeling of the vocal tract excitation function
presents a problem with respect to the generation of the
synthesized vowel-like sounds. The primary objective in
reproducing the Bell Laboratories data is to accurately
reproduce the formant frequencies measured by Peterson and
Barney. Input to the vowel generation prefilter must be
white in order to obtain an AR process as the output.

Ideally, the easiest way to exactly specify the frequency

peaks (formants) of the output speech spectrum is to specify

them as the peaks of the transfer function of the filter,
using an input signal with a constant (flat) frequency
spectrum. This requifement of a flat spectrum is satisfied

by two types of signals; white noise and a periodic

(deterministic) impulse train (corresponding to unvoiced and
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voiced excitation, respectively). Although the frequency
spectrum of an impulse train is flat, modeling of the
excitation as an impulse train is less than desirable in
terms of the accuracy with which the harmonics of the
impulse frequency correspond to the desired frequency peaks

(formants) of the output signal.

The speech spectrum for a vowel should theoretically
have formant frequencies which are integer multiples of the
fundamental frequency. However, the fundamental and formant
frequencies measured by Peterson and Barney do not exhibit
this tendency for several reasons. Primarily, the technique
used by Peterson and Barney to measure formant frequency
used a weighted average of the frequency components of the
spectral peak (Potter & Steinberg, 1950); 1in addition,
factors such as perturbation in actual fundamental frequency
and difficulty in interpreting spectrograms to within a few
Hertz, as well as measurement and roundoff error probably
contributed to the lack of relationship between measured
fundamentals and their formants., Since the measured
fundamentals are fairly low in frequency, their harmonics
are sufficiently far apart as to cause the reproduced

formants to be much different from the measured (desired)

formants.

As stated earlier, the primary objective in the

generation of the data is to recreate the measured formants.
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Therefore, the fundamental frequency data are disregarded,
and the input excitation is chosen to be a white noise
sequence with zero mean and standard deviation equal to one.
This may be likened to an unvoiced input, as though
whispered vowels are being generated. Although the power
spectral density of the excitation function of a whispered
vowel is not exactly white, the approximation of the input
as white noise is no less accurate from a signal processing
standpoint than approximating the glottal wave (voiced

input) with an impulse train.

The input excitation problem is illustrated in
Figure 16. A voiced input is shown in Figure 16(b) as a
periodic, deterministic impulse train of frequency fg with
harmonics f,, where f,=nf,. An unvoiced input is modeled in
Figure 16(d) as white noise, wiﬁh frequency components at
fns, (limited by the sampling frequency Fg), where f =n/Fg.
Comparing the output spectra of Figure 16(c) and
Figure 16(e), the reproduced formants F, are closer to the
desired formants F,, for the noise input of Figure 16(d)

than for the impulse input of Figure 16(b).

Each synthesized vowel-like utterance is generated as a
sixth-order AR time series from the three formant
frequencies supplied by the Bell Laboratories data (Barney,
1952). A Gaussian white noise process, v(n), with of=1.0

is used as the excitation function. Bandwidths for Fl, F2,
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and F3 are held constant for all utterances at the values :
52.0 Hz., 66.0 Hz., and 120.0 Hz., respectively. The 1
process is generated for 1000 samples. These samples are

then fed into the sixth-order inverse whitening filter (see

Chapter IV) to obtain the PARCOR coefficients which are used

as pattern recognition parameters for vowel identification.

L A g

- A system block diagram of the computer simulation is shown
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in Figure 17,
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CHAPTER 1V
INVERSE FILTER

The forward PARCOR coefficients Kf(n),
i=1, 2, . . . 6 corresponding to each utterance are
obtained by passing 1000 of the synthesized vowel-like
samples, z{(n), through a sixth-order inverse (whitening)
filter. The six final forward PARCOR coefficients K?(lOOO)

are used in Chapter 5 as pattern recognition parameters for

the vowel utterances.

The Linear Prediction Problem

Rabiner and Schafer (1972, chap. 8) present the linear
prediction problem; for the digital vocal tract model of
equation 1, the speech samples, z(n), are related to the
white input samples, v{(n), by equation 2. A linear

predictor with predictor coefficients, ﬁj,
z(n)= ilﬁiz(n-j). The system function for this pth-order
linea;-predictor is P(z)= f S}Zﬁ . The prediction error,
e(n), is the difference b;:ween the speech sample, z(n), and

is defined as

the linearly predicted one, Z(n):
p
e(n)=z(n)-2(n)=z(n)~- z'sjz(n-j). The error, e(n), is the
jt
output of a system with transfer function
1 : P )
—— = A(z) = 1- Zgj zZi .
H(Z) )=

which recovers the white input (e(n)=%(n)) by removing the
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correlation between samples of z(n). The error, e(n), will
approach v(n) as 31 approach aj and X(z) will be the inverse
filter for H(z). The linear prediction problem then is one
of finding the X(z) which minimizes the square of the
exponentially weighted forward prediction error given by
Ep(N)=§O(1-aCLSL)N'nIep(n)[2 (Hodgkiss & Presley, 1981).
This leads to a set of linear equations called the normal
equations. Complete algebraic derivations of the least
squares lattice equations (from which this was adapted) are

found in Lee (1980) and Pack and Satorius (Note 4).

The Least Squares Lattice

The solution of the normal equations is dependent on
the efficient inversion of a pxp covariance matrix (Lee,
1980). Several solution algorithms are discussed by Morf,
Lee, Nickolls, and Vieira (1977). The Levinson (1947)
algorithm is an efficient least squares simultaneous
solution to the normal equations requiring only O(pz)
computations per time update (where p is the order of the
filter) for a stationary process. A natural implementation
of Levinson's algorithm, the lattice structure (as realized
by Itakura and Saito, 1971), provides an extension to the
non-stationary case. Lee (1980) and Pack and Satorius (Note
4) present Levinson's recursion clearly. A class of fast
exact least squares algorithms which require only O(p)

computations per time update are discussed in the literature
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by Morf, Dickenson, Kailath, and Vvieira (1977), and Morf,
Lee, Nickolls, and Vieira (1977). An exact time update
recursion in terms of lattice variables only has been
developed and tested by Lee (1980), Morf and Lee (1978),
Morf, Lee, Nickolls, and Vieira (1977), and Morf, Vieira,

and Lee, (1977).

Lattice Structure

A feed forward (MA) lattice structure (Figure 18) is

the realization of Levinson's algorithm for the computation

of the optimal linear predictor. The lattice is composed of

a cascade of p individual lattice sections, corresponding
the stages (order) of the algorithm, i=1,2, . . . p. The
variable in the lower path, e;(n), is the forward error
between the input, z(n), and the least squares (linearly
predicted) estimate of z(n), 2(n), based on a linear
combination of past inputs: ’z\(n)=§_:l S]z(n-j). Likewise,
the backward prediction error, ri(g), propagates backward
along the upper path. The variables represented by the
cross bars of the lattice are the forward and backward
partial correlation or PARCOR coefficients which arise
naturally as intermediate entities in the solution of the
Levinson algorithm. For the least squares lattice, Kf#K:

and |K?,KG|<1 for i=1,2, . . . D.
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Lattice Variables

Appendix B presents the least squares complex adaptive
lattice variables and equations as adapted from Lee, Morf,
and Friedlander (1981) for complex data by Hodgkiss and
Presley (1982). The software supplied by Alexandrou and
Hodgkiss (Note 1) for the computer simulation is based on

these equations.

Fade factor. The fade factor, (l-Qc g ), applies an

exponential weighting on the data by weighting recent errors
more heavily than those in the distant past. For this study
the value of ac gL was chosen to be .0001, although the
choice is not critical here as the time series are all
stationary. Bounded by [0,1], (1-QCLSL) is usually close to
1; the inverse of ac 5. is approximately the memory of the
algorithm (Pack & Satorius, Note 4). The value of QcLsL May
be selected toAsatisfy a misadjustment criterion (Hodgkiss &

Presley, 1982).

Likelihood variable. A major difference between

gradient lattice developed by Griffiths (1975, 1977) and LSL
algorithms is the Gaussian likelihood parameter, Yio2 (n-1),
which replaces the constant step size of the gradient
lattice and is responsible for the fast tracking
capabilities of the LSL. For likely samples (the lower

bound of Yie2 (n-1)=0 is reached for °CLSL=())' the step size
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is small and constant, roughly on the order of magnitude of
the "optimal" gradient step size. For unlikely samples (the
upper bound ofyi_2 (n-1)=1 is reached for aCLSL=1)'
n_z(n-l) will approach unity; the gain, 1/(1-71_2(n-l)),
is very large, causing the lattice parameters to change
quickly to adapt to sudden changes in the input data
(Hodgkiss & Presley, 1981). The values of both Qe gL and
n_z(n—l) will become critical if the study is extended such
that we proceed to examine the time-varying behavior of the

PARCOR coefficients for a nonstationary input time series.

Partial correlation (PARCOR) coefficients. The

variable Aw(n) is known as the ith-order partial
autocorrelation between z(n) and z(n-i-1), and is defined as
the correlation betweeen these two samples after removing
their mutual linear dependence on intervening samples. The

partial correlation (PARCOR) coefficients K? and K? are the

partial autocorrelations normalized by E:ei..I (n) and
r
i-t

E (n"l) .

Performance Measures for the Lattice

Various performance measures may be employed to
evaluate the whitening properties of the lattice and the
accuracy with which the predictor coefficients, 3}, identify
the transfer function of the prefilter, assuming a white

input to the prefilter. Two example cases are presented in

B lin P - PR .
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Table 6, for the vowels /i/ and./u/. The pth-stage mean
Tﬂ . square error (Hodgkiss & Presley, 1982), E[]ep(n)lzl, may be
plotted at each time n. As a quantitative measure of

convergence time, the 10% settling time may be determined as

Shanie e

the time at which the mean square error comes within 10% of
the theoretical steady state value. The mean square error

for Example 1 is plotted in Figure 19. The final (pth-

LIV N VUP T G LR

stage) error power (Hodgkiss & Presley, 1982) after

‘)

convergence, E[Iep(n)|2]=E[|Gkn)|2]=cr§, will be an estimate

of the variance of the prefilter input signal,

el st

E[!v(n)|2]=¢7§ . For zero-mean Gaussian white noise input
witho,=1, °'e2 should approach one for a true whitening

filter. The misadjustment, laez-o-vz/avz |, is also a popular 4
performance measure. The misadjustment after 1000 samples

is 8% and 9% for Example 1 and Example 2, respectively.

When the filter transfer functions are realized from

the filter coefficients, the plot of the transfer function

is a good gqualitative performance measure. Inverted, the

|

F’ magnitude of the transfer function of the lattice filter,
i' |ﬁYz)|, is an approximation of the prefilter (vocal tract

= model) transfer function, |1/A(z)|. This series of transfer

L -t

1 4=

:! functions is presented in Figure 20 for Example 1 and in

Figure 21 for Example 2,

e L

»
:
3
}: - The power spectral density may also be used as another

qualitative performance measure. For a prefilter input
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Table 6
Selected Filter Parameters for
Two Example Vowel Utterances
J
__ 1 2 3 4 5 6
Example 1, vowel /i/

F 244 2300 2780 -——- -—- -———

F 52 66 120 -—- -—- -—
a -0.3717 0.3330 -1.,592 0.3281 -0.2648 0.8295
a (N) -0.3604 0.3449 -1,585 0.3332 -0.2635 0.8145
K (N) -0.2498 0.0314 -0.8441 0.1920 0.0860 0.8125
Kj 0.3653 0.5084 0.0628 0.5902 0.5362 0.9060
Final mean square error E[|e6(1000)|2] = 0.9178 = ,.3723 dB
10% settling time = 757

Example 2, vowel /u/

F 340 950 22490 --- --- -——

F 52 66 120 -—— -—- -—
a -2.9%4 4,337 -4.541 3.978 -2.558 0.8295
a (N) -2.919 4,224 -4.381 3.817 -2.459 0.8077
K (N) -0,9255 0.8691 -0.6304 0.41l67 -0.2982 0.8006
Kj 0.0214 0.9349 0.1716 0.7046 0.3407 0.9000

9119 = .4003 dB

. F. IR ‘el o
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which is zero-mean Gaussian white noise, the power spectral
density of the prefilter input is proportional toxrf r a

constant: P,(z)=10 log Co,2. The prefilter output (lattice
input) power spectral density is given by Papoulis (1981) as

C o'v2

P, (z)=10 log

acz) |2

An estimate of the prefilter input power spectral density is
the power spectral density of the lattice output

Py (2)=10 log Bz(z)lg(z)lz. It should be flat {(constant) for
optimal whitening. The power spectral density series for
the two examples are shown in Figures 22 and 23. An
estimate of the prefilter output power spectral density is

given by Griffiths (1975) as

c 2
2. (2)=10 log T
b4 - °
1R(z) |2




——y Ty v —w— = v wmmr &
e T VT T Y Tw T

e e e e

Page 61

2 (2)gl/®00=(2) %y
ST ‘(z)2%q ‘Ajtsuep Tea3dads asmod 3Indino as3rizaad ayj jo @jewIlsa uy (2) .N?JUuAvam
A31suep reajdads aemod Indut as3arrjead a31ym ayy 3o mumsﬁumm>:m ST .N_ANV«_ANV d=(z) %
A31suap (ea3zoads aemod Indino 193713 80133¥e1(q) .N_Auv<_\m.oUuANV d A3tsuap teaioads

demod 3IndIno 19377132ad (®) °9 orqel ‘T ordwexy 103 sa13Tsuap [eardoads 1amog * 1z @anb1g

o e R

() Q) (0)

AININDIYI 03Z1TVWHON AININDIYS 0IZ1WWION ADNINDIYS QIZ1IVWYHON
4 ] < LN . 3 L] . . [ ] 4 L ] L] L]

L] [ 2 ] [ ] [ 3 » 1} [ ] ‘n L] [ ] 1] 1 ] L ]

”-

. W TR T W T W W
TR - W T s e B
-
.
L]
.

D
]
v

Y
.

S = 5
. 8 .- .m . e
A " l”v »- .UH [ IH
o =y &
” |I\|'\T P\T . o
- N -

T

L il Al APl R




e q‘jié}.‘l’u\.ni]}.:ﬂ:ml A Y ‘I #

vl (2)y]/z%00=(2) %3

. N_ A~v<_\m>bu.knv 23 Ki1suep 1eajdads

*9 arqel ‘gz ardwexg 10J SO8T3TSuUap Teajzdads aamod * €Z @2anbig

(o)

AIN3INDIYS @3Z1TWWHON

L] 3 . . [
L] [] 3 . []

*
2
@°d oot

P Ta T 1a Ta e M - REMMGEMMEAD SN a2 .
v, ~
w. \O
| 5
a st ‘(z)%d ‘A3tsuap (eazdoads aemod 3ndano as3rizead ayz jJo ejewriss uy (D) 2" 0=(z)"a
Aj1suep Tealdoads aemod Indutr a237139ad 23TyYym Byl JO @3ePWIISd Ue ST 4 N:Nv@_auvflnvum
1 A31susp tealdoads aemod Indano a93713 82133e1(q)
b asmod 3ndino a937132ad (e)
3
}
() (q)
b
n AININDIYS IZIVWHON AONIND3YJ 0IZITVWHON
1 - -
] c 2 - 2
‘ & 5
]
ﬁ. - z.dv 'l\ll/\l\l‘\/\\’\.L L] .id
! g . [}
‘w - o
A
3 - -

———

IUPAPAPEEY SN VROV Wi 4 I SO A e




[ ey
-
i

Page 63
_a . CHAPTER 5 1
RESULTS 2
. For each synthesized utterance, the least squares }

lattice computes a set of PARCOR coefficients at each time

»

update. The six forward PARCOR coefficients at the last

b A 2 S A AL
T

time update K{(N)=Kf(1000) obtained as the output of the a

lattice, are the classification parameters in this study. j
Because the PARCOR coefficients span the range [-0.9674, 1
0.9971], they are normalized to span the interval [0,1] to j
facillitate comparisons of distance measures and cluster f

sizes between formant clusters and PARCOR clusters.

Henceforth, the notation K1, K2, . . . K6 will denote
normalized K$(1000); 1i=1, 2, . . . 6. Table 2 lists the

normalized ranges of all the PARCOR coefficients.

Analysis of the PARCOR Coefficient Data

The PARCOR coefficients for all of the synthesized

utterances are analyzed both graphically and quantitatively : ’
in the same manner as the formant frequencies were analyzed.
Distance measures are computed in two (K1,K2), three

(K1,K2,K3), and six (K1-K6) dimensions in a manner analogous

._.r.r_._.yqrv_ﬁ ML
RV A .

to the computation of the two (F1,F2) and three (F1,F2,F3)
: dimensional formant ffequency distance measures. The data
& .
4 for the synthesized vowel-like sounds are shown in the
P
4

Kl-le KI-K3' Kl-K4, Kl"KS' and Kl-KG planes in

P A T TV S R S Y -
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“ Figures 24-28.
: Graphical Representation
ii From a graphical analysis, vowels are most separable in

the K1-K2 plane, except for the vowel /37, for which K3 is

quite low relative to that of the other vowels and which may
ii be differentiated by its location in the three-dimensional
space defined by K1,K2 and K3. Figures 29-38 present the
synthesized vowel-like sounds, singly, in the K1-K2 plane.
The vowel /3/ in the K1-K3 plane is shown in Figure 39.
Graphically, none of the other PARCOR coefficients further
separates the vowels. As for the formant space vowel
clusters, the precise vowel clusﬁer areas enclosed on the
PARCOR plots are arbitrary, intended to indicate a general
cluster shape for the purpose of evaluating separability in

a graphical, qualitative manner. The range of K2 is

greatest, followed by that of K1 (as for the formant
frequencies). Kl includes the highest value of PARCOR

- coefficient; K2 includes the lowest. The range of K6 is
the smallest of the PARCOR ranges. The ranges spanned by
the various PARCOR coefficients are in accordance with the
V. results of Tohkura and Itakura (1979) who noted that the
spectral sensitivity for the first PARCOR is often quite

; high, and its distribution is wider than that of the higher

E! order PARCOR coefficients.
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Figure 32. Clustering of the vowel /#®/ in the K1-K2 plane
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Figure 33, Clustering of the vowel /a/ in the K1-K2 plane.
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Clustering of the vowel /U/ in the Kl1-K2 plane.
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Figure 36. Clustering of the vowel /u/ in the K1-K2 plane.
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NORMALIZED K1

Clustering of the vowel /3/ in the K1-K2 plane.
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Figure 39. Clustering of the vowel /3/ in the K1-K3 plane.
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I Distance Measures

The same selected quantitative measures of the cluster
sizes and relationships which are computed for formant
frequency clusters are also computed in two, three, and six
dimensions for the PARCOR coefficient clusters. Table 3
(p. 35) presents the average intracluster distance for each
véwel, for two, three, and six-dimensional cases. As for
the formant frequencies, intracluster distances are minimum
(indicating cluster compactness) for every vowel in two
dimensions. Table 4 (p. 36) presents the intercluster
distances for selected édjacent vowel pairs for the two,

three, and six-dimensional cases. As for the formant

frequencies, intercluster distances are maximum (indicating
separability) in the largest number of dimensions, which,

F. for the PARCOR coefficients is the six-dimensional case.

The efficiency with which the PARCOR coefficients

represent the vowel clusters may be compared to that

Fﬂ exhibited by the formant frequencies by studying Tables 3

E: and 4 (pp. 35-36). The average intracluster distance

é (Table 3) should be minimized and the intercluster distances
rre (Table 4) should be maximized.

!

if As a combined measure of compactness and separability,
F; - The ratio of the sum of average intracluster distances to

2

intercluster distance for adjacent-vowel pairs is computed

. . - L . P Brsio, B -

.
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for formants and PARCOR coeffients in two, three, and six
dimensions. This parameter should be minimized for clusters
which are both separable and compact; it is greater than
one for clusters which are less so. Quantitatively,
analysis of this parameter (Table 5, p. 37) indicates a
smaller ratio for PARCOR coefficients than for formants for
five of the twelve adjacent-vowel pairs. In other words,
the PARCOR coefficient clusters are roughly equivalent the
the formant frequency clusters in terms of their compactness
and separability. The actual number of dimensions in which
the smaller ratios are obtained varies over the vowel pairs,
The use of this ratio must be coupled with a qualitative
assessment of the vowel clusters. For instance, although
the vowels /i/ and /I/ in the K1-K2 plane in Figures 29 and
30 are both widely dispersed, inspection of Figure 24
reveals that the vowel-like sounds may be separated in the
K1-K2 plane. The combined ratio for the pair i-I, however,
suffers because the coefficients are so widely dispersed.
Inspection of the analogous figures (2,4, and 5) for the
formant frequencies suggests that the formant space
representation is about equivalent to the PARCOR coefficient
representation, yet the combined ratio in the formant space
is smaller due to the more compact nature of the clusters.
The elliptical shapes of the clusters also contribute to the
inaccuracy of this type of measurement, since it is more

suited to clusters which are symmetric.
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?‘ An item by item comparison between the columns in each
‘ Table is meaningful, specifically the two-dimensional
columns in Table 3 and the F(1,2,3) and K(1-6) columns in

ii Table 4. This method of evaluating the two systems of
classifying the vowels is more meaningful and informative in
i? conjunction with a graphical assessment since the results

: are not consistently in favor of one system or the other.
The vowel clusters are not consistently more compact or well
separated in one domain than in the other. 1In other words,
the PARCOR coefficient representation of the vowels is about

equivalent to the formant representation.

It is possible that taking the logarithm of the PARCOR

coefficients would cause them to cluster more compactly,
since the clusters have an elliptical shape. This is not

done, however, because there is no physical justification

in the case of the formant frequencies).

F- for the transformation (such as the nonlinearity of the ear
5

E. Various distance measures have been employed by

- researchers in the speech field to assess the similarity
between two utterances. These distance measures are

P‘ commonly computed from the linear predictor coefficients,
31, (Atal & Rabiner, 1976; Gray & Markel, 1976; Levinson,
Rabiner, Rosenberg & Wilpon, 1979; Tribolet,Rabiner, &

Sondhi, 1979) The physical significance of the PARCOR

coefficients lends credibility to their use as an
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alternative vehicle for assessing similarity between

utterances. A quantitative comparison between the various
measurements is warranted, based on the results presented
here which indicate that the PARCOR coefficients may be

equivalent to or better than one or more of the more widely

used feature parameters.
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CHAPTER VI
SUMMARY AND CONCLUSIONS

It was shown by Potter and Steinberg (1950) and by
Peterson and Barney (1952) that the vowel formant
frequencies Fl1 and F2 tend to cluster by vowel when plotted
for different speakers. Formant frequency data measured by
these researchers for utterances by male speakers were
obtained and analyzed by this author quantitatively as well
as graphically. The results obtained by the Bell
Laboratories researchers (Peterson & Barney, 1952; Potter &
Steinberg, 1950) are verified; the first nine vowel
clusters are defined in the space defined by Fl and F2,
whereas the third formant is necessary for identification of
the tenth vowel, /3/. The average intracluster distance for
each vowel cluster vields smaller values for each vowel when
computed in two dimensions rather than three, indicating
that the clusters are most compact in two dimensions.
Intercluster distances between adjacent vowel pairs were
computed as a measure of vowel separability and found to be

maximum in three dimensions for all of the pairs.

Each of the utterances was then reproduced from the
formant frequencies as an autoregressive time series by a
six~-pole IIR recursive digital filter, These time series

were then inverse filtered with a six-zero complex adaptive

st
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lattice filter adapted from Alexandrou & Hodgkiss (Note 1)
which yielded a whitened output signal. The partial
correlation (PARCOR) coefficients from this lattice filter

were shown to cluster by vowel in the space defined by these

coefficients.

Graphically, the first two coefficients, K1 and K2, are
shfficient to identify the first nine vowels, whereas the
third PARCOR coefficient, K3, is necessary to distinguish
the tenth vowel, /3/, from the other nine. The results of a
numerical analysis of the PARCOR coefficients were analagous
to those found for the formant frequencies. From
calculations of average intracluster distance for each
vowel, it was determined that the clusters are most compact
in two dimensions (K1,K2). Calculations of intercluster
distance between adjacent-vowel pairs show maximum cluster
separation in the largest number of dimensions (six). The
ratio of the sum of intracluster distances to intercluster
distance for each of the adjacent-vowel pairs indicates that
the PARCOR coefficient representation is as effective or
better than the formant frequency representation for five of
the twelve adjacent-vowel pairs. It is apparent then, that
the use of the PARCOR coefficients for identification of
synthesized steady state vowel-like sounds is as effective
as identification via formant frequencies. The PARCOR

coefficient technique for the identification of steady state
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synthesized vowel-like sounds is a much quicker and more

computationally efficient method than that involving

[}
FULFPI . Y _

computation of poles and zeros and back calculation of
formant frequencies and bandwidths. This is very important

in real-time identification of non-stationary signals.

Limitations of the Study

The least squares lattice is an optimal whitening
filter for an AR process when the order of the lattice
(number of zeros) is equal to the order of the AR process
(number of poles). For this study this is the case, as it

is desired to obtain the PARCOR coefficients for inputs of

known order. However, for an input signal whose origin is
not known, the performance of the filter will depend highly

on the order which is selected.

;=
1
:
!
|

Another simplification made in this study for the
purpose of exactly matching the input and output transfer
functions is the modeling of the speech signal as an AR ;
process. This is a commonly used representation in the
literature, although it is extremely simplified. The
assumption of an AR process may only be made for non-nasal q
sounds because the coupling of nasal cavities during
production of nasalized sounds adds an antiresonance or zero

to the speeech spectrum (Denes & Pinson, 1963). The process

may no longer be accurately modeled as all~-pole. However,
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researchers have commonly used an all-pole representation of
higher order (Atal & Hanauer, 1971; Friedlander, 1982; Kay
& Marple, 1981; Rabiner & Schafer, 1978) for this purpose
as an avproximation to a more desirable pole-zero (ARMA)

model because AR models are much easier to use.

The most severe limitation of the study is the fact
that synthesized speech-like sounds (rather than actual
speech sounds) are used. Although synthesized sounds are
used intentionally for the specific purpose of establishing
the PARCOR coefficients as equivalent to formant frequencies
as pattern recognition features, further studies need to
concentrate efforts on identifying actual spoken speech.
Actual speech cannot be accurately modeled as AR (even
steady-state vowel sounds) because the spectrum will contain
extra poles and zeros which are contributed by the following
factors: higher formant frequencies, lip radiation, actual
(not flat) excitation spectrum, aperiodicity of the
excitation function, damping of the vocal tract, any
laryngeal pathologies, measurement difficulty and error,
transmission loss between lips and microphone, and
inaccuracies in the mathematical speech production model
(Dunn, 1961; Fant, 1956,1959, 1963; Peterson, 1959;
Rabiner & Schafer, 1978, chap.3). An ARMA lattice is
appropriate in the case of actual speech in order to more

accurately estimate the spectrum. Friedlander and Mitra
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(1981) have used an ARMA lattice for the identification of
actual spoken nasal sounds; the results compared favorably
with those obtained by using a high order AR lattice. This
is also discussed by Fallside and Brooks (1976), Green
(1976), and Markel and Gray (1976). ARMA lattice algorithms
are presented by Lee, Friedlander and Morf, (1980), Morf,

Lee, Nickolls, and Vieira (1977), and Morf, Vieira and Lee

(1977).

Suggestions for Future Research

Very few speech sounds are steady state, and only very
briefly if at all. Use of the adaptive capability of the
lattice filter with appropriate selection of the fade
factor, (l-ag g, )» will enable the results of vowel
identification studies to be extended to simplify the
identification of more complex time-varying sounds.
Dipthongs are commonly identified by researchers in the
speech field (Potter, Kopp & Kopp, 1961) by the time-varying
paths of their second formant frequencies between formant
locations for the two composite vowel sounds. It seems
reasonable that this could be transformed into an
identification via time-varying PARCOR coefficient(s).
Turner (1982) has used the time-varying behavior of the
PARCOR coefficients to identify stop consonants, which are
characterized by an even more complicated time-varying

frequency spectrum. It is likely that with extensions to a
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i higher order AR or ARMA lattice the technique of using the i
PARCOR coefficients as pattern recognition features would be

well suited to a multitude of applications in the field of 2

signal processing. Whether used to identify stationary
I signals or to adaptively identify and track any type of
acoustic signal, the PARCOR coefficients of the complex
Ei adaptive least squares lattice conveniently and efficiently
represent time domain signals. In a purely pattern
recognition context, the PARCOR coefficients are valuable
pattern recognition features in situations where the
frequency spectrum or pole locations are meaningless.
Deller and Anderson(1980) identified types of laryngeal

pathologies by looking at clusters of z~plane pole locations

in and on the unit circle. The actual pole locations have a ]
complicated relationship to the actual pathology; in their
case, all that was needed was a clustering parameter to |
4
4

identify outlying points and types of clusters.

The identification of synthesized steady state
vowel-like sounds is a first step in the process of speech

identification. The clustering properties of the PARCOR

[APUEARAPII - GFPar

coefficients which are demonstrated in this research for the

. A

purpose of vowel identification show the PARCOR coefficients
to be an effective and efficient vehicle for the
representation and transmission of frequency spectra

information. It is hoped that these results will inspire
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other researchers to extend the study to enable the
simplification of other more complex system identification

problens.
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APPENDIX A
Selected Measures of Vowel Cluster Size and
Vowel Cluster Separability?
Given N. clusters of p-dimensional pattern vectors
®y; where x% "=,2, . « «» p is the nth component of that

vector and N; is the number of points in the jth cluster,

the centroid vector of the jth cluster Cj is

|
%
3
1 k=1'2' . . . NJ
ij = . = — z ikl . L]
Nj ije C] J=1'2, e o o Nc
2]

The intercluster distance between the ith and jth
cluster is the Euclidean distance between the centroids of
the clusters:

P Ve 172
- - n n,2 = = ;= =
Dy =11% -2 | |= (n§|lza‘zjl ) =[(zi’23) (Z; -3 ’] .

The intracluster distance is the Euclidean distance
from the kth vector in the jth cluster to the mean of that
cluster:

k=1,2, « . « N

j=l'2' . ¢« o Nc
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The average intracluster distance for the jth cluster is

1 N
—Z‘ij-

D=
}
Ni k=i

%rom Tou and Gonzales (1974, p. 77)
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APPENDIX B
Least Squares Lattice Equations°

Initialization (i=0,1, . . . PpP)

r; (-1)=0, iz p

E;'("l)=€c|_sl_ ’ €cLsL=0.001 and i#p
4 (-1)=0, i#0

8l (-1)=0, 0<k<i-1,i#0, and i# p.

Time update (n20)
eg(n)=ry (n)=x(n)

e r r 2
Eo(n)=Eo(n)= (l-aCLSL )Eo(ﬂ'l)"’lX(ﬂ)'
Y- (n=1)=0.

Order update (i=1,2, . . . ,p).

eh‘(n)-rﬁ|(n-l)

8;(n)=(1-a )O;(n-1)-
' cLsL o 1- 7;_,(n-1)

& (n)=4% (n)/E}., (n)

K[ (n)=4; (n)/E{-y (n-1)

e; (n)=e;, (n)+K{(n)rh, (n-1)

r; (n)=r;, (n-1)+k’(n)e;., (n)

% (n)=E%, (n)-]4;(n)|2/E]_, (n-1)

Ef(n)=El, (n=1)-]4, (n) [3/E]_, (n)

Yy (n=1)= y._o(n=1)+]5,, (n-1)[2/E] (n-1).
&) (n)=k (n)

b (n)=kf(n)

d&)  (n)=alir (ny+x] (nipffd(n-1)

. . . ISkSi-lo
B ()=t (n-1)4k$(m)ali ™ (n)
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(4a)

s

(4b)

{(4c)

(44)

(4e)
(4£)
(4g)

(4h)

(41)
(43)
(4k)
(41)

(4m)
(4n)
(40) ,
(4p) i
(4q) |
(4r)

(4s) !
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Least Squares Lattice Variablesb

Lattice Parameter® Symbol

Number of time samples (iterations) N

Filter order p

Time variable (n)

Stage variable, current stage i

Stage variable, lower stages k

Input time sample x(n)

Gain Yi-p(n-1)

Fade factor (l—aCLSL)

Step size parameter Ai(n)

Forward predictor coefficient vector JQ (n)
1gkgi-1

Backward predictor coefficient vector &2 (n)

Highest (ith) forward predictor é? (n)

Previous vector of backward predictors étj)(n-l)

Forward power E?(n)

Backward power E(n)

Forward PARCOR coefficient K?(n)

Backward PARCOR coefficient K (n)

Forward error e; (n)

Backward error r; (n)

9from Hodgkiss & Presley (1982, pp. 331-332)
badapted from Hodgkiss & Presley (1982, pp. 331-332)

®Variables pertain to ith stage unless otherwise noted.
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